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Abstract
In recent years, dimensionality-reduction techniques have been developed and are widely used for hypothesis
generation in Exploratory Data Analysis. However, these techniques are confronted with overcoming the trade-off
between computation time and the quality of the provided dimensionality reduction. In this work, we address this
limitation, by introducing Hierarchical Stochastic Neighbor Embedding (Hierarchical-SNE). Using a hierarchical
representation of the data, we incorporate the well-known mantra of Overview-First, Details-On-Demand in non-
linear dimensionality reduction. First, the analysis shows an embedding, that reveals only the dominant structures
in the data (Overview). Then, by selecting structures that are visible in the overview, the user can filter the data
and drill down in the hierarchy. While the user descends into the hierarchy, detailed visualizations of the high-
dimensional structures will lead to new insights. In this paper, we explain how Hierarchical-SNE scales to the
analysis of big datasets. In addition, we show its application potential in the visualization of Deep-Learning
architectures and the analysis of hyperspectral images.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

In Exploratory Data Analysis, a number of visualization
techniques are used to support the hypothesis-generation
process. Among its goals are the extraction of important
variables, the detection of outliers or the identification of
underlying non-convex structures [Tuk62]. Non-linear di-
mensionality reduction techniques play a key role in the
understanding of high-dimensional data [BSIM14, SMT13].
A simple example is presented in Figure 1a, where a non-
convex 1D manifold structure is defined in a 2D space. Non-
linear dimensionality reduction is used to generate a 1D em-
bedding (Figure 1b). Note that a linear transformation cannot
project the manifold on such a 1D space. In the last decade,
the application of non-linear dimensionality reduction tech-
niques on real-world data led to new findings as complex
real-world phenomena lead to non-convex structures that re-
sides in a high-dimensional space [ADT∗13, BSC∗14]. Al-
gorithms such as Sammon Mapping [Sam69], LLE [RS00],
ISOMAP [TDSL00] or tSNE [vdMH08] help during Ex-
ploratory Data Analysis by giving a meaningful representa-
tion of these high-dimensional spaces. Broadly, two different
approaches have been developed by the Machine-Learning
and the Visualization community. The Machine-Learning

approach tends to focus on accurate but computationally-
expensive techniques, whereas the Visualization approach
often trades accuracy and non-convex structure preservation
for interactivity. Consequently, the first type is often too slow
for interactive interfaces, limiting the ability to support the
hypothesis-generation process. The second type is less accu-
rate and can generate non-existing structures. For example,
hybrid approaches use a set of landmarks, also called piv-
ots or control points, which are embedded using non-linear
dimensionality-reduction techniques. The remaining points
are placed by interpolating their positions. Due to the sparse
amount of landmarks, this process may not reflect the under-
lying manifold. An example is given in Figure 1c. The land-
marks are placed in the wrong order according to the man-
ifold, if the rest of the data is not taken into account. This
problem can be partly remedied by letting the user manipu-
late the landmark positions in the embedding. However, this
interaction cannot avoid the creation of non-existing struc-
tures and requires prior knowledge of the user about the data,
which is usually not available.

Our Hierarchical Stochastic Neighbor Embedding algo-
rithm (HSNE) is a non-linear dimensionality reduction tech-
nique that aims at bridging the gap between accuracy and
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Figure 1: Dimensionality reduction with landmarks. In
non-linear embedding techniques the underlying manifold
(a) is respected (b). In hybrid approaches, landmarks are
placed without considering the underlying manifold (c) and
data points are placed by interpolating the landmark posi-
tions (grey line in c). The layout quality thus relates to the
used number of landmarks.

interactivity. It is motivated by the good results that SNE
techniques show in user studies [SMT13] and is as fast as
the state-of-the-art hybrid techniques. While our approach
also involves landmarks, it differs significantly from previ-
ous work. Our landmarks are enriched by a smooth and non-
convex area of influence on the data and the landmarks are
chosen meaningfully by analyzing the data points and their
k-nearest neighbor graph, while avoiding outliers. Overlaps
in the areas of influence are used to encode similarities be-
tween landmarks. Our process is hierarchical and landmarks
at a higher scale are always a subset of the previous scale.
This hierarchy allows us to keep the memory footprint small,
while enabling a new way of analyzing the data. We follow
the Overview-first, Details-on-Demand paradigm [Shn96]
for the analysis of non-linear embeddings. Dominant struc-
tures that appear in the Overview can be analyzed by gen-
erating an embedding of the related landmarks in the sub-
sequent lower scale. In this way, the user can drill down in
the data and search for structures at finer scales. It is an ap-
proach that scales very well to big datasets and we illustrate
its application potential in two different use cases.

The remainder of the paper is structured as follows. Af-
ter an overview of the related work, Section 3 presents the
HSNE algorithm with a focus on the construction of the hi-
erarchy, while the hierarchical analysis is presented in Sec-
tion 4. Finally, Section 5 contains two use cases showing the
potential of our method, while experiments on well known
datasets are presented in Section 6.

2. Related Work

Linear dimensionality-reduction techniques try to preserve
global distances between data points in the embedding as in
the high-dimensional space. Hierarchical implementations
of these techniques have been developed to reduce calcu-
lations. Notable examples are Glimmer [IMO09], Steerable
MDS [WM04] and HiPP [PM08] that linearly separate the
space with a top-down approach. Differently from linear
algorithms, non-linear dimensionality reduction techniques
try to preserve geodesic distances on manifolds between data
points. However, a simple case as in Figure 1a is rarely
met in practice, and the definition of geodesic distances
is a challenging task. In real-world data, data points form
manifolds defined by sets of points varying in size, density,
shape and intrinsic dimensionality. A class of techniques

known as Stochastic Neighbor Embedding (SNE) [HR02]
is accepted as the state of the art for non-linear dimen-
sionality reduction for the exploratory analysis of high-
dimensional data. Intuitively, SNE techniques encode small-
neighborhood relationships in the high-dimensional space
and in the embedding as probability distributions. These
techniques aim at preserving neighborhoods of small size
for each data point. The embeddings are defined via an iter-
ative minimization of the loss of information when placing
the point in the embedding. Besides the discoveries made
using algorithms like tSNE [ADT∗13, BSC∗14], the abil-
ity to reveal interesting structures is demonstrated by exten-
sive user studies on real-world and synthetic data [SMT13].
Unfortunately, the application of SNE techniques to large
datasets is problematic, as the computational complex-
ity is usually O(n2). Using approximations it can be re-
duced to O(n log(n)) [PL∗15,VDM14]. Furthermore, small-
neighborhood preservation might miss structures at differ-
ent sizes. Our HSNE is an SNE technique, which over-
comes the computational complexity and shows structures
at different scales by creating a hierarchical representa-
tion of the dataset. Differently from other hierarchical tech-
niques [IMO09, WM04, PM08], we use a bottom-up ap-
proach in the creation of the hierarchy. Our key insight is
to use landmarks that represent increasingly large portion of
the data.

The usage of landmarks is not new and can be separated
in two categories, which we refer to as the non-linear and
hybrid landmark techniques (see Figure 1). Both select a set
of landmarks from the original dataset. Non-linear landmark
techniques embed them using metrics that estimate geodesic
distances between points [ST02,vdMH08]. Figure 1b shows
a simple example, where the neigborhood relationship are
extracted using the geodesic distances on the manifold. For
example, Landmark-tSNE creates the K-Nearest Neighbor
(KNN) Graph between the original data point and computes
for each landmark the probability of reaching other land-
marks with a random-walk on the KNN-Graph [vdMH08].
Non-linear landmark techniques can discover non-convex
structures, but their scale is directly related to the number
of selected landmarks. Further, the user is limited to the
visualization of landmarks and not the complete dataset,
limiting the insights that can be extracted from the data.
Hybrid landmark techniques embed landmarks with non-
linear dimensionality reduction techniques based on high-
dimensional descriptors of the landmarks derived from the
original data. The complete dataset is then embedded using
different interpolation schemes [FFDP15,JPC∗11,PNML08,
PSN10,PdRDK99,dST04,PEP∗11]. This approach is widely
used by the visualization community due to its fast computa-
tion, making it ideal for interactive systems. However, non-
convex structures are not preserved (unless the sampling is
dense enough) because the underlying manifold is ignored.
Figure 1c illustrates the problem: the selected landmarks are
seen as a straight line even by a non-linear technique.
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HSNE is a non-linear landmark technique, but supports
the exploration of non-convex structures at different scales,
while sharing the performance of hybrid techniques and sup-
porting interaction to gain insights into the data. In particu-
lar, our novel hierarchical approach using an Overview-first,
Details-on-Demand paradigm helps in this context.

3. Hierarchical Stochastic Neighbor Embedding

Here, we present our HSNE technique with a focus on the
creation of the hierarchical data representation. An overview
is given in Figure 2. Throughout the paper, calligraphic
notations indicate sets, for example, D is the set of high-
dimensional data points. Our representation is composed of
different scales, or levels, organized hierarchically. We use
superscripts to indicate this scale. Elements in sets are iden-
tified using subscripts. We denote Ls the set of landmarks
representing the dataset at scale s. L1 represents the first
scale, which is the input datasetD. Higher scales are always
subsets of previous scales (Ls ⊂ Ls−1).

Our algorithm works as follows. Starting with L1, we
build a Finite Markov Chain (FMC) from a k-nearest-
neighbor graph to encode similarities between landmarks
(Section 3.1). It is used to guide the selection process of a
landmark subset for the next scale (Section 3.2) and, then,
to compute an area of influence for each selected landmark
(Section 3.3). The overlap between these areas indicates sim-
ilarity and forms the basis for a new FMC encoding (Sec-
tion 3.4), which is then used to compute the next scale. After
preprocessing the different scales, we can perform a multi-
scale analysis by computing an embedding of landmarks us-
ing their scale-dependent information (Section 3.5).

Figure 2: Overview of the hierarchy construction. A Finite
Markov Chain (FMC) is built from the k-nearest neighbor
graph. The FMC encodes the similarities between landmarks
and it is used for selecting landmarks in the next scale. The
FMC is also used to compute the area of influence of the
selected landmarks on the landmarks in the lower scale. The
overlap between the areas of influence is used to build a new
FMC that encodes similarities in the new scale.

3.1. From data points to a Finite Markov Chain

A Finite Markov Chain is a random process that undergoes
transitions from one state to another in a state space. Our Fi-
nite Markov Chain is used to model the random movement
of a hypothetical particle on the manifold, and the states are
given by the landmarks in Ls. The transitions are encoded
in a square transition matrix T s of size |Ls|× |Ls|. T s(i, j)
represents the probability that the landmark Ls

j belongs to
the neighborhood of the landmark Ls

i in the scale s. It is
important to note that HSNE aims at encoding small neigh-
borhoods of fixed size for every landmark. Therefore T s is
sparse by construction, and its memory complexity grows
linearly with the size of the dataset.

For the Finite Markov Chain described by the transition
matrix T 1, each data pointDi is only allowed to transition to
a data pointD j, ifD j belongs to the k-nearest-neighborhood
N (i) of Di. The probability assigned to the transition is
given by the following equation:

T 1(i, j) =
exp(d(i, j)2/σi)

∑k exp(d(i,k)2/σi)
with j,k ∈N (i), (1)

where d(i, j) are the Euclidean distances between data
points, and σi is chosen such that T 1(i,−) has perplexity
of |N (i)|/3 [VDM14]. The exponential falloff is used to re-
duce the problem caused by the presence of outliers, that
act as shortcuts across manifolds. SNE techniques focus on
the preservation of small neighborhoods for each data point.
Thus, a small value of K is usually selected, where 100 is
a common choice [vdMH08, VDM14]. To improve perfor-
mance, we adopt the approximated algorithm for the compu-
tation of the k-nearest-neighborhoods proposed by Pezzotti
et al. [PL∗15]. Experimentally, we see that such an algo-
rithm does not compromise the quality of the embeddings
generated by HSNE while improving the computation time
by two orders of magnitude. We refer the interested reader
to the work of Pezzotti et al. [PL∗15] for details. The com-
putational complexity of this first step is O(|D| log(|D|))

3.2. Landmark selection and outliers identification

We use the transition matrix to carefully select meaningful
landmarks in order to reduce the size of the dataset. This
step is of crucial importance, e.g., in order to avoid choosing
outliers as landmarks. So far, we have only given the defini-
tion of the transition matrix for the lowest scale. We define
it for other scales in Section 3.4. Nonetheless, the process
described here is valid at all scales, which is why we use
the superscript s to indicate its generality. Before we explain
our sampling solution, we introduce the concept of equilib-
rium distribution of a Finite Markov Chain. A vector π is
called equilibrium distribution of the Finite Markov Chain,
described by the transition matrix T s, if it represents a prob-
ability distribution that is not changed by a transition in the
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Figure 3: Selection of landmarks and outliers using the
equilibrium distribution π of the Finite Markov Chain (see
Equation 2). Points are color coded from black to red ac-
cording to their π-value. Selected landmarks are circled in
green, while potential outliers are circled in blue.

state space:

π = πT s and ∑
i

πi = 1 (2)

Intuitively, the equilibrium distribution π represents the
probability of being in a state after an infinite number of tran-
sitions in the state space. These transitions are often called
random walks in the state space. Given the transition proba-
bilities defined by Equation 1, the equilibrium distribution
of our Finite Markov Chain assigns higher probability to
data points that reside in high-density regions in the origi-
nal space. Figure 3 shows an example, where the landmarks
Ls are color coded according to the equilibrium distribution
of the Finite Markov Chain that encodes their similarities.
Landmarks in dense regions of the space, have high value of
π and are selected to be in Ls+1 (green circles in Figure 3).
Landmarks with a low value of π are considered outliers in
scale s+1 (blue circles in Figure 3).

Landmarks in Ls+1 are selected by sampling the equilib-
rium distribution π, that is computed using a simple Markov
Chain Monte Carlo technique [Gey11]. For each landmark in
Ls, we start β random walks of fixed length θ. Every land-
mark that is the endpoint of at least βtreshold∗β random walks
is selected as a landmark in Ls+1, if no random walks reach
a given landmark, it is detected as outlier. We experimented
with different values of β and θ, finding that β = 100 and
θ = 50 is a good compromise between speed and accuracy
for the data we have been analyzing. Notice that the com-
putation of random walks is not costly, and thousands can
be performed every millisecond on a state-of-the-art desk-
top computer. We provide a default value of βtreshold = 1.5,
that we found is conservative enough to create a hierarchical
representation for all the dataset that we tested. The compu-
tation complexity of this step is O(|Ls|).

3.3. Area of influence

The process of choosing landmarks cannot be simply re-
launched, as we would then loose important information
from previous scales. In consequence, we will extend the
definition of the transition matrix to all scales beyond the
first. To this extent, we introduce the area of influence for
each landmark, which keeps track of a landmark’s impact on
previous scales. The influence exercised by landmarks in Ls

on those in Ls−1, is encoded in an influence matrix Is. Ma-

Figure 4: The area of influence can be seen as flow converg-
ing in landmarks of the higher scale. The area of influence of
the landmarks selected in Figure 3 is shown here. The over-
lap in the area of influence is used to compute similarities
between landmarks (see Equation 5).

trix Is has size |Ls−1|×|Ls|, where Is(i, j) is the probability
that the landmark Ls−1

i in the previous scale is well repre-
sented by Ls

j . Specifically, each row i is a probability distri-
bution that denotes the probability that the landmark Ls−1

i
is in the area of influence of landmarks in Ls. Consequently,
the influence of a scale s on scale r is defined by a chain of
sparse matrix multiplications:

Ir←s =

[
r

∏
i=s

(
Ii
)t
]t

with r < s (3)

It is important to note that the area of influence is localized,
implying that Is is sparse. Therefore, the memory complex-
ity grows only linearly with the set of landmarks. To com-
pute Is, we start a number of random walks in the Finite
Markov Chain described by T s−1 for each landmark Ls−1,
leading to a computational complexity of O(|Ls−1|). The
random walk stops when a landmark in Ls is reached. The
percentage of random walks reaching every landmarks in Ls

is then used as a row for Is(i,−). Figure 4 shows the area
of influence of the selected landmarks in Figure 3 as a flow,
converging in landmarks of the higher scale. Depending on
the data distribution in the high-dimensional space, land-
marks can exercise influence on regions of different size. We
define the weight of a landmark as the size of the region that
it represents. The vector W s encodes the weights of the land-
marks at scale s, and it is defined by the following equation:

W s =W s−1 ∗ Is with W 1 = 1 (4)

The width of the landmarks in Figure 4 represents these
weights W s.

3.4. From areas of influence to Finite Markov Chains

Similarities between landmarks in scale s are computed us-
ing the overlaps in their areas of influence on scale s− 1.
Intuitively, if the areas of influence of two landmarks over-
lap, it means that they are close on the manifold, therefore
their similarity is high. We use the influence matrix Is to cre-
ate the FMC, encoding similarities between landmarks inLs.

c© 2016 The Author(s)
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The transition matrix T s is given by the following equation:

T s(i, j) =
∑
|Ls−1|
k=1 Is(k, i)Is(k, j)W s−1(k)

∑
|Ls−1|
k=1 ∑

|Ls|
l=1 Is(k, i)Is(k, l)W s−1(k)

(5)

where Is(k, i)Is(k, j)W s−1(k) is the overlap of the area of in-
fluence of Ls

j and Ls
i on landmark Ls−1

k . Figure 4 depicts
overlaps between the areas of interest of the landmarks se-
lected in Figure 3. The overlap between L0 and L1 is higher
than the overlap between L1 and L2, as expected because L1
is more similar to L0 than L2.

3.5. Generation of the embedding

SNE methods rely on a probability distribution P, that en-
codes neighborhood relationships. In practice, we rely on
tSNE because of its ability to overcome the so called crowd-
ing problem [vdMH08]. tSNE interprets similarities between
data points as a symmetric joint-probability distribution P.
Likewise a joint-probability distribution Q is computed, that
describes the similarities in the low-dimensional space. The
goal is that the position of the data points in the embedding
faithfully represent the similarities in the original space. The
iterative minimization of the Kullback-Leibler divergence is
used to reduce the information loss when Q is used to repre-
sent P. An in depth explanation on how tSNE computes Q
and minimizes the divergence function is out of the scope of
this work. We refer to van der Maaten et al. [vdMH08] for
further details. In our HSNE, P is computed from the transi-
tion matrix T s:

P(i, j) =
T s(i, j)+T s( j, i)

2 |Ls| where ∑
i, j

P(i, j) = 1 (6)

With this definition, an embedding can be computed even
for a subset of the landmarks, the only requirement is that
their similarities are encoded in a Finite Markov Chain. This
observation is important as it enables the Overview-First,
Details-on-Demand analysis presented in the next section.
However, if the user is interested in generating a complete
embedding (as in hybrid techniques), it can be achieved by
interpolating the position of the landmarks in the top scale
o:

Y1
i =

Lo

∑
j
Yo

j I1←o(i, j) (7)

where I1←o(i, j) is the influence exercised on the data
points, as shown in Equation 3.

4. Hierarchical Analysis

In this section, we describe how the hierarchical analysis is
performed by presenting how the detailed embeddings are
generated by filtering and drilling-down in the data. Before
addressing the algorithmic solution, we will motivate the
usefulness of such a tool with an example.

Figure 5: Traditional vs Hierarchical analysis. (a) High-
dimensional readings from sensors located on a map and
prior knowledge on the phenomenon of interest are available
to the user. In the traditional analysis (b) a single embedding
is generated and analyzed. In our hierarchical analysis (c),
an overview shows dominant structures in the dataset. De-
tailed embedding of the structures are created by filtering
and drilling into the data.

4.1. Example of a hierarchical analysis

Standard dimensionality reduction techniques are often used
to enable a user to visually identify groups of similar data
points. This possibility is useful, as it enables tasks, such
as verification, naming or matching [BSIM14]. Figure 5a,
shows a simple naming task using readings from atmo-
spheric sensors as high-dimensional data. Figure 5b shows
another example, in the context of traditional analysis. In
a naming task, the analysis of the given data might lead
to a set of different clusters. A user could inspect these
clusters by selecting one and seeing the corresponding re-
gion highlighted on the map. Using prior knowledge for a
few locations, it becomes possible to attribute conditions,
such as sunny, cloudy and rainy weather, on the entire map.
Nonetheless, such an analysis assumes that the scale of the
clustering was sufficiently precise and not overly precise.

The hierarchical nature of our approach enables a new
multi-scale analysis based on the Overview-First, Details-
on-Demand mantra [Shn96]. An example is given in Fig-
ure 5c. Instead of showing an embedding of all data points,
the analysis starts with the highest-scale landmarks. The re-
sulting clusters will represent very coarse dominant struc-
tures, for example, good and bad weather zones. Addition-
ally, the area of influence encoded in the size of the embed-
ded points gives feedback regarding the complexity of the
original underlying data. If a user now wishes to explore
more detailed information, a cluster can be selected and a
lower scale embedding is produced. The heterogeneous data
on the lower level then becomes visible, for example, bad
weather transforms into cloudy and rainy regions. Our ap-
proach is particularly suited for heterogeneity at different
scales, which is common in large datasets.
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Figure 6: Hierarchical analysis of hyperspectral images. Hyperspectral images of the Sun and the area surronding the city
of Los Angeles are analyzed using HSNE. Dominant structures are revealed at different scales and can further inspected by
creating detailed embeddings.

4.2. Filtering and drill down

To enable the investigation of details, we start from a se-
lected subset O of landmarks at scale s: O ⊂Ls. We drill in
the data by selecting a subset G of landmarks at scale s−1:
G ⊂ Ls−1, using the influence matrix Is to connect the two
scales. As explained in Section 3.3, a row i in Is represents
for Ls−1

i the influence of the landmarks Ls at scale s. We
define Fi as the probability that landmark Ls−1

i is in the area
of influence of the landmarks in O:

Fi = ∑
Ls

j∈O
Is(i, j) (8)

If all the landmarks influencing Ls−1
i are in O, then Fi = 1.

If no influence from O is exercised on Ls−1
i then Fi = 0.

A landmark Ls−1
i is selected to be in G if Fi > γ, where γ

is a user-defined threshold. However, it should be noted that
a low value of γ is not desirable, as it will add landmarks,
which are only slightly influenced by O. A high value of γ

is also not desirable, leading to the exclusion of regions that
are highly influenced by O. While it remains a parameter,
we found experimentally that γ = 0.5 allows for effective
drilling in the data. The transition matrix T s−1

G , represent-
ing the similarities in G, is derived from T s−1 by removing
the rows and columns of landmarks in Ls−1, which are ab-
sent from G. Given the transition matrix, the embedding is
computed as before (Section 3.5).

5. Use cases

Here, we show examples for our hierarchical analysis on
real-world data, to illustrate our contributions and poten-
tial application areas of our HSNE. Besides high-resolution
hyperspectral images of the Sun and remote-sensing data,
we visualize the training set of a well-known Deep Learn-
ing model, showing how it interprets the input images. We
demonstrate the HSNE’s ability to show dominant structures
in the Overview and to explore them in detailed embeddings
to reveal finer-grained structures. We test our C++ imple-
mentation of HSNE on a DELL Precision T3600 worksta-
tion with a 6-core Intel Xeon E5 1650 CPU @ 3.2GHz and
32GB RAM.

5.1. Hyperspectral images

The visible light spectrum is only a tiny part of the elec-
tromagnetic spectrum and some phenomena can only be
understood by considering the complete spectrum. Fig-
ure 6a, shows hyperspectral images of the sun. Different
wavelengths of the electromagnetic spectrum reveal differ-
ent observations, such as solar flares or the corona. The im-
age resolution is 1024×1024, leading to a dataset composed
of ≈ 1M data points (pixels). Each pixel is described by
12 dimensions corresponding to the intensity readings. We
downloaded the data from the Solar Dynamics Observatory†

† http://sdo.gsfc.nasa.gov/
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on November 13th 2015. In an Exploratory Data Analysis
the user needs to analyze all pictures of all wavelengths in
parallel. However, with an increasing number of images, the
data complexity complicates the generation of a hypothe-
sis or the differentiation of different regions. Here, we show
how HSNE supports such analysis.

The hierarchical representation of the data is precomputed
in 2’13" minutes and only needs to be processed once. From
this representation the overview and detailed embeddings
require only a few seconds and can be visualized using a
Progressive Visual Analytics approach [PL∗15]. Figure 6b
shows the Overview generated by HSNE. The Overview is
composed of 352 landmarks in two clusters (T0 and T1). Ev-
ery landmark is drawn using semi-transparent circles, while
the size of a landmark encodes its weight as defined in Equa-
tion 4. The clusters correspond to two dominant structures in
the data, the Sun surface (T1) and the Space in the back-
ground (T0). Their areas of influence is visualized in the
linked view. Here, an image of size 1024× 1024, where a
greyscale colormap is used to represent the probability of a
pixel to belong to the area of influence of the selection. The
user drills in the data by requesting detailed visualizations
of the two dominant structures. A detailed embedding of T0
(Figure 6c) describes different regions of the Corona. S0 rep-
resents the area close to the surface, while S1 represents the
background. S2 and S3 represent the external area of the
Corona, where S3 is an area with low readings in the AIA
211 channel (pink in Figure 6a). S4 is an interesting clus-
ter, representing the overlayed logo, present in all images.
S4 is considered an outlier in the overview and, therefore,
was not represented as a separate cluster. However, upon re-
finement, this cluster would appear, as it will be a dominant
structure at this scale. A detailed embedding of T1 leads to
three clusters (Figure 6c). Although not as well separated,
they clearly represent different regions on the Sun surface.
R0 are hotter regions, or where solar flares are visible, while
R1 and R2 represent colder regions separated in one of the
input images, namely the Magn image (Figure 6d).

We performed a similar analysis on hyperspectral images
for remote sensing. These data are captured by the LandSat
satellites ‡, and we present an example of the area surround-
ing the city of Los Angeles. The data are composed of 11
images, representing different bands of the electromagnetic
spectrum. Figure 6e shows three of such images, and a refer-
ence image. Similarly to the previous example, we analyzed
the images at a resolution of 1024× 1024. Figure 6f shows
the dominant structures in the highest scale, namely ocean,
clouds and the main land, that are identified by the user by
looking at the reference image and using its prior knowl-
edge on the phenomenon. A detailed embedding represent-
ing the main land is shown in Figure 6g. It is possible to
identify different parts of the detailed embeddings related to

‡ http://landsat.usgs.gov/

mountains, urban and desert areas. Drilling in, detailed em-
beddings are generated, such as the one representing desert
areas, depicted in Figure 6h. More heterogeneity is revealed
at this scale. For instance dry lakes, such as the Rogers Dry
Lake, are located in the cluster of desert areas.

5.2. Visualization of Deep Learning datasets

Deep Learning builds upon neural networks composed of
many (hence, the name deep) layers. Deep Neural Networks
(DNN) achieved impressive results in image recognition,
sentiment analysis and language translation. For an overview
of the field, we refer to [LBH15]. However, it is difficult to
visualize how a DNN works. An approach that was used re-
cently, is to select some potential inputs that are processes
by the DNN [JvdMJV15, MKS∗15]. For each input, the val-
ues computed by the last layer of the network are used as
high-dimensional descriptor. Once that the descriptor are as-
signed to each data point, they are embedded in a 2D space
using non-linear dimensionality reduction techniques. tSNE
is usually selected for such a task [JvdMJV15, MKS∗15].
The limitation of this approach is that only small subsets can
be visualized at a given time, limiting the ability to evaluate
and inspect how the network is trained. We extract features
from the test set of a well known DNN [KSH12], leading to

Figure 7: Deep Learning models. Features are ex-
tracted from 100k images using a Deep Neural Network
(DNN) [KSH12] and the hierarchical analysis is performed
using HSNE. Starting from the overview, dominant struc-
tures at different levels are revealed. The user can inspect
the embeddings and request detailed visualization. This is
achieved through filtering of the landmarks and by drilling
down in the hierarchy. A high-resolution version of the fig-
ure is provided in the supplemental materials.
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Figure 8: Embeddings of the MNIST dataset created by non-linear dimensionality reduction techniques (tSNE and Landmark-
SNE) and by hybrid techniques (LSP, P-LSP and LAMP). Differently from hybrid techniques, HSNE preserves the manifold in
the landmark embedding, creating compact clusters in the complete embedding.

a dataset consisting of 100k images and 4096 dimensions.
The hierarchical representation of the data is computed in
92 seconds, while every embedding requires only few sec-
onds to be computed. Our approach shows the hierarchical
nature of the learning process, as depicted in Figure 7. In the
overview two clusters are visible. We label them as Man-
made and Nature, based on the inspection of the images rep-
resented by the landmarks. Detailed embeddings of the clus-
ters are produced and confirm the previous labeling. In the
Nature cluster new dominant structures are revealed, such
as images of Aquatic animals, Insects or Dogs. Similarly,
a detailed visualization of the landmarks labeled as Man-
made reveal more heterogeneity in the data. The user can
drill deeper in the data, for example by requesting detailed
visualization of landmarks identified as Ships, Vehicles and
Acquatic animals.

6. Evaluation

In this section we provide experimental evidence that HSNE
outperforms hybrid and non-linear dimensionality reduc-
tion techniques. In our evaluation, we use the MNIST
dataset § (60k points, 784 dimensions), the CIFAR-10
dataset ¶ (50k points, 1024 dimensions) and the TIMIT
dataset ‖ (1M points, 39 dimensions). Figure 8 shows
the embeddings of the MNIST dataset produced with our
approach compared to those created by non-linear tech-
niques (tSNE and L-SNE [vdMH08]) and hybrid techniques
(LSP [PNML08], Piecewise-LSP [PEP∗11], created by the
Projection Explorer tool [POM07], and LAMP [JPC∗11]
created by the Projection Analyzer tool ∗∗). Our HSNE

§ http://yann.lecun.com/exdb/mnist/
¶ https://www.cs.toronto.edu/ kriz/cifar.html
‖ https://catalog.ldc.upenn.edu/LDC93S1
∗∗ https://code.google.com/archive/p/projection-analyzer/

embedding is computed for three scales, resulting in the
highest-level embedding containing 1431 landmarks. The
tSNE embedding is computed using approximated compu-
tations [PL∗15, VDM14] to reduce the computational com-
plexity to O(n logn). For the L-SNE algorithm, we ran-
domly selected 1431 landmarks and we use approximated
k-nearest-neighbor computations (see Section 3.1), making
it comparable to the setting for the HSNE. We were not able
to generate a LSP embedding of the MNIST dataset due to
its size and present an embedding of 5k randomly selected
data points instead. We use the default parameters for the se-
lection of the landmarks, leading to 500 landmarks in LSP,
3714 in P-LSP and 734 in LAMP. For each technique we
present, where available, the embedding containing only the
landmarks, as well as the complete embedding. Our HSNE
is much faster than tSNE and comparable to hybrid tech-
niques.

We base our quantitative assessement of the quality of
the embedding on the Nearest-Neighbor Preservation met-
ric (NNP) as proposed by Venna et al. [VPN∗10] and im-
plemented by Ingram and Munzner [IM15]. For each data
point, the K-Nearest-Neighborhood (KNN) in the high-
dimensional space is compared with the KNN in the em-
bedding. Average precision/recall curves are generated by
taking into account high-dimensional neighborhoods of size
Khigh = 30 [IM15]. The precision/recall curves are computed
by selecting Kemb-neighborhoods in the embedding, iterating
Kemb from 1 to Khigh and computing the true positive T P in
the Kemb-neighborhood. The precision is set as T P/Kemb and
the recall as T P/Khigh. The curve is obtained by connect-
ing the points in the precision/recall space for each value of
Kemb [IM15]. However, NNP fails to measure the preserva-
tion of high-level information, e.g. neighborhood preserva-
tion in a geodesic sense and, to the best of our knowledge, no
such metric exists. Therefore, we assess the high-level struc-
ture preservation both by a visual inspection of the labeled
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data and by the evaluation of the NNP during the drill-down
in the data. Intuitively, if HSNE does not have the ability
to preserve high-level structures, during a drill-down part of
the data will be left out, leading to gaps in the lowest-level
embedding and, consequently, to bad NNP.

Even if a validation of the visual cluster cannot be per-
formed, given its non-convex nature [Aup14], the MNIST
dataset contains compact manifolds [vdMH08] that repre-
sent handwritten digits (see examples in Figure 8). There-
fore, based on the visual separation of the labeled landmarks,
we can conclude that HSNE preserves manifolds similar
to non-linear dimensionality-reduction algorithms. Hybrid
techniques are incapable of well separating the manifolds in
this example. Due to the fact that the underlying manifold is
not respected, the landmark positions in the embedding ig-
nores local structures in the data, leading to problems similar
to the one depicted in Figure 1c. HSNE separates the mani-
folds even better than tSNE, see orange cluster in the tSNE
embedding compared to orange landmarks in the HSNE em-
bedding. This result is a consequence of tSNE focusing only
on the preservation of small neighborhoods. When the size
of the data increases, we experimentally found that mini-
mization performed by tSNE will often incur in local min-
ima that disrupt the visual representation of high-level man-
ifolds.

tSNE’s ability to preserve small neighborhoods is con-
firmed by the NNP precision/recall curves presented in Fig-
ure 9a. For HSNE we compute a precision/recall curve for
each scale by linearly interpolating the data points using
landmarks in the corresponding scale, as in Equation 7. In
the highest scale, HSNE outperforms the other hybrid tech-
niques but it performs worse than tSNE. This is expected
as the information preserved by HSNE at this scale is not
measured by NNP. When the lowest scale is considered, the
precision/recall curve of HSNE and tSNE are similar. How-
ever, HSNE is designed to filter the data during the hierar-
chical analysis. Figure 9b shows the analysis performed by
selecting landmarks that belong to the digit ‘7’ (green points
in Figure 8) and computing the the precision/recall curves
using the points selected to be in the lowest scale. HSNE
outperforms tSNE in the lowest scale: by reducing the num-
ber of data points to embed, HSNE is less influenced by lo-
cal minima during their placement, leading to a better NNP.
This result also confirms that in the higher scales of the hier-
archy, manifolds are consistently represented, avoiding the
creation of gaps in the lowest level embedding during the
analysis. We obtained similar results for different analysis
performed on the three datasets.

7. Conclusions

We presented Hierachical Stochastic Neighbor Em-
bedding (HSNE). HSNE introduces the well-known
mantra Overview-First, Details-on-Demand in non-linear
dimensionality-reduction techniques. Our technique pre-
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Figure 9: Nearest Neighborhood Preservation (NNP) on
the MNIST dataset. HSNE outperforms hybrid techniques
and it is comparable to tSNE on a full scale analysis. When
the user filters the data during the drill-in, HSNE outper-
forms tSNE.

serves non-convex structures, similarly or better than the
state-of-the-art methods, but can be employed in interactive
software for the Exploratory Analysis of high-dimensional
data. Even though complete embeddings (similar to hybrid
techniques) are possible, a key strength is the interactive hi-
erarchical analysis to reveal dominant structures at different
scales, which is useful in various applications, as evidenced
by our use cases.

The various results indicate that HSNE is a beneficial re-
placement for non-linear and hybrid algorithms in Visual
Analytics solutions. The use of the area of influence, is
an important visualization element and delivers additional
information, although new strategies would have to be de-
veloped to effectively exploit it. Nonetheless, this aspect is
important when considering systems to assess the quality of
embeddings [MCMT14]. These mainly focus on visualizing
and inspecting missing and false neighborhood relationships
between data points. In the future, we want to investigate
this neighborhood encoding further and explore how it can
help users in assessing the quality of the embedding at differ-
ent scales. We also consider applying uncertainty visualiza-
tion techniques to illustrate the selected landmarks in linked
views, as the area of influence is directly expressed in terms
of probabilities. The multi-scale nature of many real-world
phenomena leads us to the conclusion that HSNE may give
new insights into a number of problem domains.
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