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Abstract

In this work we present a method to control and cut down
the computational time required by feature-based multiple-
view alignment solutions employed in modern 3D modeling
pipelines. The reduction of the number of feature matches is
guaranteed for each added view by means of an incremental
(allowing dynamic views addition) and adaptive (variable
number of clusters) implementation of a k-means clustering.
The proposed method also comprises convergence quality
and cluster cardinality control mechanisms, and guarantees
multiple view alignment in nearly constant time with respect
to the number of scans that need to be aligned for a signifi-
cant class of feature descriptors. Moreover we demonstrate,
on a representative experimental dataset, that the per-view
alignment time can be reduced to a fraction of the corre-
sponding pairwise alignment time without any performance
degradation in terms of successful alignment. The obtained
results are relevant for several 3D modeling applications
where, especially for the acquisition of big and complex
datasets, automation and robustness requirements are to be
coupled with a quick and interactive usage of modern range
scanners.

1. Introduction

The alignment of multiple 3D scans of an object (or

scene) acquired from different viewpoints represents the

first step of every 3D modeling pipeline [1], and can also be

seen as a category of problems in the more general ‘shape

correspondence’ domain [20]. Although the topic is a clas-

sic one in computer vision, the increasing spatial resolution

attainable by high-precision scan devices nowadays em-

ployed in many professional application fields (industrial,

biomedical, cultural heritage) has given rise to new critical-

ities that need to be addressed. In this work we focus on

the first stage of a 3D modeling pipeline, where multiple in-

dependently referenced scans are collected and need to be

co-referenced within a unique coordinate system. This is

usually referred to as coarse alignment, which is then fol-

lowed by fine and/or global registration that properly refine

the alignment. Our objective is to boost the performance of

the coarse alignment in its most challenging setting, that is

when big sets of scans, acquired through highly resoluted

acquisition devices, need to be aligned in an automatic, fast

and reliable way. We therefore consider: 1) high align-

ment automatism, 2) computational speed (which allows

to give immediate user feedback) and 3) absence of con-

straints about the acquisition path, as three pivotal factors

to guarantee an efficient and interactive object acquisition.

The coarse alignment phase is typically devised as a pair-

wise approach, implicitly assuming the availability of a con-

catenated acquisition path, i.e. where each newly acquired

view possesses a certain overlap area with the previously

acquired one. However, this is not always a viable solution,

since a more unconstrained (not concatenated) acquisition

path is likely to be requested in many real-life scenarios.

On the other hand, straightforward multi-view extension of

such pairwise approaches would quickly lead to computa-

tional issues whenever they are based on pure combinato-

rial or exhaustive approaches. This is especially true, as we

will see, for feature-based approaches, where the number of

feature matches are bound to increase proportionally with

respect to the number of views that need to be aligned. In

this perspective, feature space organization solutions, such

as partitioning or reduction of the feature collection, are

desirable in order to keep the computational burden under

control. In this work we address the above issues with the

objective to find new feature space clustering methods that

allow the implementation of an effective multi-view coarse

registration, which in turn should enable a progressive and

interactive object acquisition according to the three pivotal

factors previously stated.

This paper is organized as follows: after analyzing some

related work (Sec.2), we consider possible multi-view ex-

tensions of feature-based pairwise coarse alignment meth-

ods. In particular, the general schemes of both ‘direct’ and
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‘clustering-based’ extensions are introduced in Sec.3. In

Sec.4 we consider the computational issues of the direct ex-

tension, and reformulate the computational problem by in-

troducing a variant of the classic k-means algorithm, which

we address as iat-k-means. The proposed clustering tech-

nique is tailored in such a way so as to improve the orga-

nization of the feature space to allow for a more efficient

multi-view extension of the coarse alignment. Although the

proposed approach can be seen as a functional layer inde-

pendent from the specific application, we will also demon-

strate (Sec.5) that an implementation of our clustering tech-

nique for a reference coarse alignment technique is capa-

ble of guaranteeing multiple view alignment in a highly re-

duced and nearly constant time (with respect to the number

of scans that need to be aligned). This will be demonstrated

in Sec.6 by performance and computational comparisons on

a well-assorted set of multi-view object acquisitions.

2. Related work
Despite the fact that coarse alignment methods usually

employed in modeling pipelines are typically pairwise, a

few multi-view solutions have already been presented, al-

though limited by some constraints. A pseudo-multi-view

approach has been first proposed in [6], where an exhaustive

pairwise alignment is carried out, followed by a global op-

timization that tries to generate a graph of the reconstructed

object. In [14] a single-to-multiple view alignment is pro-

posed, based on a tensor feature indexed in a hash table

and a voting mechanism used to build a spanning tree graph

of rigid spatial transforms to organize the multi-view align-

ment. In [19] an alignment of unordered views of an object

is obtained under some hypothesis: quadruples of scans on

cardinal points of an object are combined in small meshes,

which are then assembled with others through a PCA proce-

dure. In all these methods single scans are always converted

in meshes and the problem of the alignment is seen as a sur-

face matching or shape correspondence problem [20]. It is

important to note that all the above multi-view solutions suf-

fer either from some limiting hypothesis (e.g. on the kind

of objects or data that can be handled), or due to their com-

putational burden (entailed by the exhaustive nature of the

proposed solution).

In the past few years, pairwise feature-based multi-scale ap-

proaches such as [10, 4, 2] have proven to be effective meth-

ods for an automatic coarse alignment of scanned datasets

(range images, point clouds or meshes). The first two meth-

ods are mesh-based, i.e. features are extracted from meshes

generated out of single range scans, while [2] relies on fea-

tures directly extracted from the original range data, and

was shown to be robust (near 100% correct alignments for a

variety of high-resolution, real objects) and fast enough for

practical scanner usage (few seconds are required to align

each view, composed by a million points each), at least in

a pairwise perspective. A recent direct multi-view exten-

sion of [2] clearly shows that the alignment time is depen-

dent with respect to the number of views (which in real life

acquisition settings can range from dozens to hundreds of

scans per object) [3]. To the best of our knowledge, no ef-

fective multiple view coarse alignment technique has been

presented up to now that is capable of satisfying all three re-

quirements described in Sec.1. Moreover, in a feature space

organization perspective, we also did not find any cluster-

ing technique suitable to guarantee the necessary flexibility

to provide incremental and adaptive reorganization of the

feature space, as well as the complexity reduction mecha-

nisms that we introduce in this paper.

A popular approach to organize the feature space is repre-

sented by the Bag of Words (BoW) model [16]. BoW so-

lutions have been proposed in the field of similarity match-

ing (e.g. object retrieval in large databases), they have also

been used in one case [9] for view alignment purpose. How-

ever, it is worth noting that there is little in common be-

tween the BoW approach with respect to our solution, de-

spite the fact that both aim to some kind of feature space

organization. In fact, BoW approaches are not suitable

to an incremental and interactive acquisition pipeline be-

cause a) they require that all the scans should be available

in advance, b) they present moderate to high computational

complexity for the codeword dictionary construction (this is

why off-line dictionary and database matching make them

suitable for retrieval applications) and c) ‘feature vs code-

word’ matches are sufficient for similarity seeking, while

for alignment purpose accurate feature localization is essen-

tial and ‘feature vs feature’ matching is always necessary at

least within a cluster-of-interest (where cluster centroids are

instead used for faster clusters-of-interest search).

Other application-specific clustering techniques have al-

ready been derived from the popular k-means [12] algo-

rithm. A review of the variants proposed, such as the

large scale clustering, clusterization of heterogeneous data,

or semi-supervised clustering, has been proposed in [7].

The iat-k-means approach described in Sec.4 presents some

similarities with respect to the global k-means [11], as well

as with the sequential k-means [12]. However, it also de-

taches from them in some essential and distinctive aspects:

in fact our approach tries to minimize the standard deviation

of the cluster dimension, as well as keep the average cluster

dimension fixed while adding new elements in the feature

space.

3. Multiple view alignment extension
A direct and intuitive extension of a feature-based pair-

wise alignment pipeline, capable of aligning a set of scans

without the severe constraint related to concatenated acqui-

sition path, is shown in Fig.1. Here each new view is only

required to have a partial overlap with respect to at least one
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Figure 1: General multi-view alignment pipeline.

of the previously aligned views, rather than requiring over-

lap with the previous one. This kind of approach has been

already considered in a recent work [3], where a linear de-

pendency of the alignment time with respect to the number

of previously aligned views was clearly visible in the ex-

perimental results. This is caused by the fact that features

belonging to any of the previously acquired views need to

be stored (possibly avoiding spatial duplicates) in a suitable

structure (some kind of feature table), and for each new fea-

ture an exhaustive match has to be performed against all the

features in the table, leading to a progressive growth of the

matching time. In this work we aim to tackle the compu-

tational issue described above while trying to preserve the

working principles of the scheme portrayed in Fig.1, which

demonstrated to be both flexible and practical1. An exten-

sion of such general scheme that considers a feature space

organization is presented in Fig.2(a), where two new blocks

are evidenced in red. The upper block has the scope of

identifying the most similar cluster-of-interest, which is ob-

tained by matching each new feature with respect to all the

cluster centroids, while the subsequent ‘feature vs feature’

matching is limited to the ones within the cluster of inter-

est. The lower red block represents the feature space update,

which is now organized in clusters. Although an extension

of the matching process that foresees feature space cluster-

ization can be quite intuitive, it does not automatically in-

volve a computational gain because the feature space man-

agement will also introduce an overhead, especially con-

sidering that an update of the feature space has to be per-

formed at every aligned view. This is, however, a necessity

since leaving the feature space statically organized would

imply to lose control on the number of features that pop-

ulate each cluster, thus giving again rise to the problem of

linear growth of computation time.

1For example, unsuccessfully aligned views could be easily handled by

moving them in a waiting list and reconsidered them at a later time (‘Try

Later’ block in the scheme), until alignment is achieved.

4. Proposed solution

We propose a solution which allows to reformulate the

computational load of an interactive multi-view alignment

process from the one associated to the direct extension

(Sec.4.1), to one obtained through a particular clustering-

based extension. The reduction of feature matches can be

guaranteed, at each added view, by means of an incremen-
tal (allowing online views addition) and adaptive (variable

k) implementation of a k-means clustering (Sec.4.2). As

clustering here is simply functional to reduce the number

of feature matches (that is, not strictly oriented to optimal

space partitioning), in Sec.4.3 we introduce a quality ver-

ification mechanism that allows early termination before

complete (and possibly computationally expensive) conver-

gence is reached, thus limiting the computational burden

associated to the clustering update process. We address our

approach as iat-k-means, by the initials of the above three

keywords.

4.1. Computational complexity issues

As stated, our main objective is the limitation of the fea-

ture matching time in a multiple view alignment pipeline. In

fact, the direct extension approach described in Fig.1 needs

an exhaustive matching for each of the features extracted at

the n-th view (constituting the set Fn) against the set Fdb

representing all the non-repeating features collected up to

view n − 1, therefore giving rise to a problematic depen-

dency of the matching time TFn→Fdb
from the number of

views. In average, this can be estimated as:

TFn→Fdb
≈ αf̃ (n− 1) F̃ (1)

where f̃ = |Fn| is the average number of features present in

the view currently being added, while F̃ = |Fn| − |Fn−1|
is the average number of non-repeating features collected in

Fdb at each new view, and the coefficient α represents the

cost of a single feature match. In principle, a clustering of

the feature space at each stage n could be used to reduce the

number of feature matches from f̃(n − 1)F̃ to f̃ C̃, where

C̃, at the moment, represents a general idea of the average

dimension of feature clusters in the feature space. How-

ever, several problems arise about (i) the control of C̃ at

each added view, (ii) the computational load associated to

the search of the nearest cluster for each feature of the added

view, (iii) the cost of updating the cluster at each added view

and, most importantly, (iv) the reduction of feature matches

must not determine any sensible degradation of the overall

automatic alignment performance. We are, therefore, inter-

ested in a solution that addresses all these problems (from

(i) to (iv)) by guaranteeing multiple view alignment in a re-

duced time, irrespective of the number of added views.
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(a)

(b)

Figure 2: (a) Proposed multi-view alignment pipeline;

(b) expansion of the Incremental and Adaptive Clustering

block.

4.2. Incremental and adaptive k-means clustering

To separate features into subsets we adopt a clusteriza-

tion approach consisting in a modified version of the clas-

sic k-means algorithm [12] on the space of d-dimensional

feature signatures. First, the clustering must necessarily be

incremental, in that it must be capable to handle the inser-

tion of new features at certain points of the ‘means’ (i.e.

the cluster centroids) migration. To do so, after each suc-

cessful alignment, new features are added to the set Fdb and

associated to existing clusters, and a k-means update is per-

formed (more details on how to do this in a balanced way

with respect to both computational load and convergence is-

sues will be given in the next subsection). With the aim of

cutting down the computational complexity of the feature

matching with respect to the elements within a cluster, we

are also strongly interested in exerting a control on the av-

erage dimension of each cluster. Therefore, we also devise

an adaptive clustering where the number of clusters at the

n-th view kn is varied in order to guarantee:

Fdb =
kn⋃
i=1

Ci where

⎧⎪⎨
⎪⎩

kn∑
i=1

|Ci|
kn

≤ Csize

Cj ∩ Ci = ∅ ∀j �= i

(2)

where Ci is one of the k clusters that partition the set Fdb. In

practice, k should increase when Csize new features need to

be added in the feature database, and this can be obtained by

splitting the largest clusters. To do so, a ranking of the clus-

ters’ dimension is performed, then the splitting is repeated

on as many clusters as needed to satisfy (2). It is impor-

tant to note that this approach does not guarantee that every

cluster dimension stays below Csize: in fact some clusters

are allowed to grow a little bigger, while the biggest are

split. With respect to a hard policy where every partition

bigger than Csize gets split, the one proposed allows to re-

duce the overall number of partitions created, thus speeding

up the matching. Once a cluster is split, for each of the new

clusters a random feature is selected as centroid, and the k-

means update process is performed. The incremental and

adaptive k-means approach described up to now will be re-

ferred to as ia-k-means, in contrast to the previously stated

iat-k-means which also include the termination rule that we

will introduce in the following section.

4.3. Complexity analysis and control

A potential reduction of the matching time through fea-

ture clustering does not come without costs. Using the

above ia-k-means approach, the matching time (at scan n)

can now be estimated as:

TFn→Fdb
≈ αf̃Csize + βf̃kn + tnC (3)

where problems (i) to (iii) described in Sec.4.1 are clearly
visible in the right hand term. In the first term of the sum, α
represents the cost of ‘feature vs feature’ matching, which
is performed for each feature within the set Fn (which av-

erage size is f̃ ) with respect to the features that populate
the selected cluster (with average size Csize). In the second
term, β is the cost of ‘feature vs cluster centroid’ matching,
where each feature within Fn has to be matched with the
cluster centroids, which number at scan n is kn, and even-
tually tnC is the cost of cluster update at scan n.
Considering again the first term we can observe that, if

Csize < F̃ , we can expect a reduction of the matching time
even with respect to the reference pairwise alignment time.
The second term of the sum depends from n, and therefore
this introduces again a linear dependency with respect to
n. However, as we will see in the next section, the second
contribution can be kept marginal with respect to the first
one since we will show (under proper assumptions) that we
can reach β � α with no alignment performance degra-
dation, thus greatly reducing the rate at which the linear
dependence on n impacts on the overall alignment time (as
we shall see, this contribution is negligible for the practi-
cal application highlighted in this work). The third term tnC
would also increase with n because of the increasing num-
ber of features, however two aspects are worth noting: 1) in
our incremental approach an update is performed after each
added view n, therefore requiring only minor adjustments to
the clustering; 2) we are not interested in true convergence
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at each step n (we are not performing classification) and
therefore an early termination rule can be introduced (un-
der proper quality constraints). Actually, this turns out to
be an effective way to keep tnC low and almost constant, as
we will also see experimentally. To this end, we define two

threshold values, T̂ and Q̂, which respectively constraint the
minimum execution time of the ia-k-means updating and
the minimum clustering accuracy according to the follow-
ing quality measure:

Qn
C =

100

|Fdb| ·
|Fdb|∑
i=1

Q(fi)

Q (f) =

{
1 Cj (f) = Cj−1 (f)

0 Cj (f) �= Cj−1 (f)

(4)

where Cj(f) indicates the cluster that contains the feature

f during iteration j of the k-means update performed after

aligning the n-th scan. In short, Qn
C represents the percent-

age of features which do not change cluster at the j-th k-

means update iteration (when true convergence is reached,

Qn
C reaches the value 100%). We then continue to execute

k-means iterations until the following termination rule is

satisfied:

((tnC > T̂ ) ∧ (Qn
C > Q̂)) ∨ (Qn

C = 100%) (5)

According to (5), the algorithm continues to improve the

quality of the solution until a time threshold is reached. If

tnC reaches T̂ without a minimal quality Q̂, the iterations

continue until the quality threshold is reached. In Sec.6

we will experimentally see how this is enough to guaran-

tee good alignment performance even for relatively low val-

ues of Q̂. The ia-k-means which also comprise such an

early termination mechanism will be referred to as the iat-
k-means.

5. Proposed Implementation
We now specialize our general method to the common

case of circular feature descriptors, composed by N angular

sectors and M radial sectors. In order to match two fea-

tures in the most reliable way, a circular correlation should

be computed in order to determine the best relative orienta-

tion between the two features, requiring a number of sector

comparisons equal to M ·N2. One way to reduce this com-

putational complexity is to determine the orientation of each

feature through the estimation of a principal direction ([17],

[18]), thus obtaining directly comparable ‘oriented’ features

(this problem has been addressed to as the ”Local Refer-

ence Frame” search in [15]). However, a direct exploitation

of this complexity reduction is likely to cause a degradation

of the correspondences’ reliability, since the principal di-

rection may not always be correctly estimated. This is why

in our implementation we exploit principal feature orien-

tations (estimated through an algorithm presented in [13])

only to speed up the ‘feature vs cluster centroid’ matching,

thus allowing us to obtain β = M · N . In our implemen-

tation we adopt the descriptors proposed in [2] (N = 32,

M = 3), where in order to handle undefined sectors of the

feature descriptor due to incomplete representation of the

object (holes, undercuts, ...), we treat them as zero value

sectors and adopt the following modified ‘feature vs cluster

centroid’ distance function between a feature descriptor A
and a centroid descriptor B:

D (A,B) =

∑
i=1...N,j=1...M U(Ai,j , Bi,j) · |Ai,j −Bi,j |∑

i=1...N,j=1...M U(Ai,j , Bi,j)
(6)

U (s1, s2) =

{
0 undefined (s1) ∨ undefined (s2)

1 defined (s1) ∧ defined (s2)

For the identification of the corresponding feature within

the cluster (i.e. the ‘feature vs feature’ matching), in or-

der to obtain the best possible discrimination, we resort to a

circular correlation that is resilient to undefined sectors, as

described in [2].

Another way we followed to reduce the ‘feature vs clus-

ter centroid’ matching time led us to exploit the high dis-

tinctiveness between the cluster centroids by means of an

angular subsampling of their feature signature by a factor

S, therefore reducing the number of comparisons for each

matching to M × 
NS �, leading to β = α
N ·S in (3). In our

implementation we used S = 4, thus obtaining a speed-

up factor of 128, leading to the desired result β � α. As

we will see in Sec.6, this simplified cluster search did not

degrade the overall alignment performance, giving our ap-

proach a tremendous computational time reduction. Some

of the original saliency-based feature descriptors are pre-

sented in Fig.3(a), while some examples of how our cen-

troid descriptors look like are presented in Fig.3(b).

The two factors that allowed us to obtain β � α in our im-

plementation (that is, avoiding the circular correlation and

(a)

(b)

Figure 3: (a) Feature signatures obtained according to [2],

gray sectors are undefined; (b) Cluster centroids signature

obtained with iat-k-means algorithm.
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Figure 4: Datasets used in the experiments, from left: Cupid, Shell, Carter, Slide, Neptune, Hurricane, Capital, Venus.

subsampling the feature signatures), may not be feasible for

different types of features ([5], [8]). In the worst case (that

is, when N = S = 1, leading to β = α), the matching time

for our approach would grow linearly with respect to the

number of features in the database, but thanks to the clus-

tering this linear increment is reduced by a factor of Csize

with respect to an exhaustive matching.

Once the correspondence matches have been obtained

through the described approach, in order to filter out pos-

sible outliers from the correspondence set we follow the al-

gorithm described in [2]. The approach turned out to be

robust, particularly for cases when the percentage of inliers

in the correspondence set was very low.

Once a new view has been successfully aligned, its feature

points are integrated into the feature table. In order to pre-

vent the inclusion of features that are already present in the

table, for each new feature to be added its spatial position

is evaluated to identify whether it is already included in the

table. If this is the case, only a single feature is maintained,

while the others are discarded. In order to retain the feature

with the most significant signature, the one which has its

normal better aligned with respect to the acquisition point

of view is kept, supposing that in such conditions the acqui-

sition should better capture the surface, minimizing occlu-

sions.

6. Experimental results
Tests have been made on a well-assorted variety of scan

datasets (see Fig.4) in terms of object attributes and appli-

cation fields, some of which have been directly provided

by the authors of [2], while others have been acquired with

a high-resolution structured-light scanner. Each dataset is

composed by numerous range images, each containing a

high number of features (see first 4 cols of Tab.1), as well

as many repeated details (especially for the Shell and Carter

datasets) which give rise to similar feature signatures, pos-

sibly causing misalignments. We compare the performance

of our matching technique (which works according to the

scheme of Fig.2) with respect to the direct multi-view ex-

tension introduced in [3], for which an exhaustive search

is performed with respect to all the features present in the

database (as in Fig.1). As shown in Tab.1, for a typical se-

lection of parameters, our algorithm allows to incrementally

align sets of range images in a greatly reduced time with re-

spect to the exhaustive approach, proving the effectiveness

of our iat-k-means solution. We have also verified the ab-

sence of degradation in terms of correct alignment percent-

age. Surprisingly, we also observed that for the Neptune

dataset we had an increased percentage of correct align-

ments. This is probably due to the fact that the exhaus-

tive search could potentially generate many false positives

caused by features with lots of invalid sectors. On the con-

trary, our space clusterization tends to isolate all these fea-

tures into some clusters, actually avoiding these mislead-

ing matches. After some empirical tests on a veriety of

datasets, we have determined that a good value for the Csize

is around 50.

In Tab.1 we also present the computation time required by

our approach, split into two terms: the matching time (col.

6) and the iat-k-means update time (col. 7). We discrim-

inate the two terms since, while the matching directly im-

pacts on the time the user has to wait before the system can

show the resulting alignment, the iat-k-means update can

be performed while the user adjusts the scanning head in

order to acquire the following scan, thus resulting transpar-

ent to the user. In Fig.5 we show the evolution of the align-

ment time for the Shell dataset. For the exhaustive match-

ing approach (in yellow), we can note a linear increase in

the alignment time as long as new, non-repeating features

are to be included into the feature database, that is until the

entire object surface has been acquired (range image from

1 to 50). From this point on, thanks to the feature dupli-

cates avoidance mechanism, the number of features in the

database does not increase significantly. Peaks and valleys

in the graph are generated by range images that present a

very high, or low, number of features extracted with respect

to the average parameter f̃ .

Thanks to the early termination rule, iat-k-means up-

dates are executed in nearly constant time, as shown in

Fig.6. It is worth noting that, as Fig.7 testifies, such termi-

nation rule does not lead to alignment performance degra-

dation even for low values of quality threshold Q̂. This fig-
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Dataset RI # Points #Extr. I) % RI I) Avg t I) Avg t II) % RI II) Avg t III) Avg t
feats aligned match [s] update [s] aligned direct [s] pairw. [s]

Hurricane 32 22,032k 7626 100% 0.473 0.560 100% 21.8 2.163

Capital 36 20,012k 3320 100% 0.442 0.385 100% 6.5 2.242

Cupid 45 13,645k 7729 100% 0.657 0.552 100% 17.9 0.746

Slide 48 6,939k 1026 95.83% 0.048 0.106 95.83% 0.39 0.290

Venus 61 50,961k 9932 100% 0.424 0.459 100% 16.3 1.701

Carter 70 38,316k 10481 100% 0.517 0.562 100% 29.6 1.185

Shell 98 74,125k 11195 100% 0.699 0.651 100% 46.1 5.285

Neptune 79 54,310k 15251 96.20% 0.759 0.639 93.67% 23.3 1.995

Table 1: Matching results with Csize = 50, Q̂ = 75%, T̂ = 600msec. Percentage of correctly aligned views (I), average

matching and iat-k-means update time (per view) for the proposed method and for the direct extension [3] (II). Pairwise

alignment time (III).

Figure 5: Comparison between alignment time required by

the exhaustive matching based on [2] and our cluster match-

ing solution.

Figure 6: Alignment time decomposition between the clus-

ter matching and the iat-k-means updating for our solution.

ure also shows that the time threshold T̂ set to 600 msec

grants that the iterative iat-k-means update process is run

long enough to obtain an adequate accuracy of the feature

clustering, which is suitable for our scan alignment purpose.

While the value T̂ should be tuned with respect to the per-

oformance of the hardware at hand, the threshold Q̂ can be

set according to the features distribution within the space:

Figure 7: Evolution of iat-k-means execution time and

number of correct correspondences with respect to Q̂, with

fixed T̂ = 600msec, on Shell dataset.

if an object presents many similar features, then it may be

necessary to increase Q̂. This said, for all the datasets pre-

sented no fine-tuning was necessary (not even for the Shell

or Carter datasets, which presents many repeating features).

On average, the matching time required by our technique

for each new scan alignment is well below one second even

for a feature database composed by more than 15000 fea-

tures. Although the tests presented in this section have been

performed on high quality range scans we can, however, in-

fer some considerations about the approach resilience with

respect to scan quality. While high-frequency noise (i.e.

outliers) can be easily filtered out beforehand and should

not affect the alignment performance, low-frequency defor-

mations (such as the ones that usually affect Kinect scans)

would cause the quality of the feature descriptors to de-

grade, thus compromising performance. In conclusion, it is

important to notice that while ‘feature vs feature’ matching

time remains constant due to the fixed average size of the
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clusters, as well as the iat-k-means update time, which is

bound through the termination rule, ‘feature vs cluster cen-

troid’ matching time presents a linear increase due to the

progressive increment in the number of clusters. However,

the time required by a single ‘feature vs cluster centroid’

match has been significantly decreased (in our implementa-

tion, 128 of such matches require the same computational

overhead of a single ‘feature vs feature’ match), as we de-

scribed in Sec.5, therefore remaining well balanced with re-

spect to the other two time factors. The results presented in

this section let us conclude that we have achieved the objec-

tive of obtaining multiple view alignment in nearly constant

time, regardless to the number of previously aligned views.

7. Conclusions

In this work we investigated the problem of feature or-

ganization with the aim of reducing the computational bur-

den required by an incremental, feature-based, multi-view

alignment system employed to align sets of numerous and

dense 3D scans. We presented the iat-k-means, an effec-

tive variant of the k-means algorithm which succeeds in

maintaining the computational complexity of the matching

process nearly constant, despite the increase of feature nu-

merosity. We also presented a specific implementation of

our clustering for an automatic alignment technique that, in

its pairwise version, demonstrated to be particularly robust

and accurate, as well as competitive with respect to compu-

tational time, but increasingly (linearly) slower in its multi-

view version due to the exhaustive matching it required. In

contrast, our adaptive clustering is capable of maintaining

the matching time practically constant throughout the in-

cremental alignment procedure, regardless to the number of

views previously aligned. Through the modifications pro-

posed for the feature matching procedure, we also substan-

tially reduced the time required by the feature matching

itself without any degradation of alignment accuracy. We

conclude that our clustering technique is particularly suited

to be integrated into manual or robotic acquisition pipelines

where precision, robustness and automatism are of the ut-

most importance.
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